IPENZ Transportation Group February 2016

John Lieswyn

Major Cycleways and Electric Bicycles

Agenda

- Introduction
- A new paradigm in trail design CV Link
 - Background
 - Concept
 - Funding
 - New design
- Electric bikes
 - Defined
 - Legislation
 - Design considerations

John Lieswyn

- Professional road cyclist, 1992–2005
 - US National TT Champion 1991, 2004
 - 2,000 races worldwide
- Education & qualifications
 - University of Florida, BSc 1990
 - University of Canterbury, MET 2011
 - ITE Professional Transportation Planner

Specialist areas:

- Policy, legislation, standards
- Walking & cycling facility design
- Demand modelling, economic evaluation
- Project prioritisation
- N. American experience:
 - Vancouver, Columbus, Florida DOT, Orange County, San Francisco, Central Valley cities, Coachella Valley
- NZ experience:
 - Auckland, Hamilton, New Plymouth, Hastings, Palmerston North, Upper Hutt, Wellington
 - Nelson, Greymouth, Christchurch, Queenstown, Invercargill

CVLINK

CONNECTING THE COACHELLA VALLEY

CV Link will be an innovative, multi-modal facility of national importance that connects communities in the Coachella Valley and provides significant environmental, health, wellness, and economic benefits

Context – natural environment

Context – transportation

Context – land use

Getting the message out...

01:49

URL: <u>https://vimeo.com/97478887</u> Won national award for best public service announcement, 2015

Design vehicle

Pedestrian: 60 cm Width: 90 cm Surface: soft Preferred speed: 1.5 m/s

CYCLIST: 75 cm Width: 1.5 m Surface: hard Preferred

speed: 6.0 m/s

LSEV: 137 cm Width: 2.2 m Surface: soft or hard

Not in NZ law

Pedestrian

Cyclist

LSEV

Field confirmation

Concept

On-street

Undercrossings

CV Link summary

- Rationale similar to NZ Cycle Trail momentum is key
 - Build big to engage the imagination
 - Build fast so that people can see themselves using it soon
 - Secure political support to break down institutional barriers
- Striking design elements similar to Nelson St Cycleway
- Set desirable dimensions rather than minimums

ELECTRIC BIKES

Why?

With an e-bike, bicyclists can ride more often, farther, and for more trips. Electric bicycles are designed to be as safe as traditional bicycles, do not compromise consumer safety, and benefit new bicyclists who may be discouraged from riding a traditional bicycle due to limited physical fitness, age, disability or convenience

- People for Bikes

What is an e-bike?

Bicycle Style (BSEB)

- Pedelec (pedal assist)
- Powered bike (throttle)
- S-Pedelec (pedal assist)

Scooter Style (SSEB)

- Moped
- Geometry
- Weight

Other

- LSEV
- Closer to BSEB
- Weight

Regulations: NZ

cycle –

(a) means a vehicle that has at least 2 wheels and that is designed primarily to be propelled by the muscular energy of the rider; and
(b) includes a power-assisted cycle (RUR 2014 §1.6)

power-assisted cycle means a cycle NOTE! more auxiliary propulsion motors that power <u>output</u> not exceeding 300 W Motors are typically rated at input power, and are usually 80% efficient.

Mobility device – ...is powered solely by a motor that has a maximum power output not exceeding 1500 W...

Regulations: US

	GA	VEHICLE		USER			BIKEWAY ACCESS				
		PEDAL OPERATED	MAXIMUM MOTOR-ASSISTED SPEED (Km/h	MINIMUM Age (years)	DRIVER'S License	LICENSE PLATE	HELMET	CLASS I BIKE PATH	CLASS II Bike Lane	CLASS III Bike Route	CLASS IV Protected Lane
	BICYCLE	YES	N/A	N/A	NO	NO	17 AND UNDER	YES	YES	YES	YES
	TYPE 1 E-BIKE	YES	32	N/A	NO	NO	17 AND UNDER	YES	YES	YES	YES
VEHICLE TYPE	TYPE 2 E-BIKE	NO	32	N/A	NO	NO	17 AND UNDER	YES	YES	YES	YES
	TYPE 3 E-BIKE	YES	45	16	NO	NO	YES	NO	YES	YES	YES
	MOPED	NO	N/A	16	YES	YES	YES	NO	YES	YES	NO

California AB 1096 (2015) - infographic: People for Bikes

Locale	Terms / Notes	Label	Throt.	Km/h	Watts	Kg	Age
USA CA	Low speed vehicle (CPSC, CFR) Type 1 Type 2 Type 3	- Yes Yes Yes	- No Yes No	32 32 32 45	750 - - -	- - -	- - - 16
Canada	Type label required	Yes	-	32	500	-	-
Australia	Class AB Power Assisted Bicycle Pedelec	-	Yes No	- 25	200 250	-	-
NZ	Class AB	-	-	-	300	-	-
EU	Pedelec (EN15194), kits exempt	Yes	No	25	250	40	14
Germany Switz.	Pedelec (as per EU) S-Pedelec	Yes Yes	No No	25 45	250 400	-	-
UK	Bicycle Tricycle, tandem	Yes Yes	-	24 24	200 250	40 60	14
Israel		-	-	25	250	30	14
Japan	Max. assist ratio 2:1	-	-	-	-	-	-
China		-	-	20	-	40	-

Regulatory Criteria

Power

- 200 W: limits bicycle choice as it is below EU standard
- 250 W: widest range of bikes, but insufficient for hilly areas / heavy bikes

Weight

- Limits cargo / family bikes

Speed

Sources (L): John Lieswyn

(R): Societa Piemontese Automobili (SPA)

- 85th percentile normal bike = 22 km/h, e-bikes not that different
- We match our speed to the environment; most cars can go 150 km/h, but we don't require governors on them

Rules need to be carefully written

Most US jurisdictions have rules on e-bikes limiting power to less than 750 watts and an *unassisted speed* of less than 20 mph (32 km/h)

Interpretation: speed limit does not apply for pedal assist bike Assist cuts out at 28 mph (45 km/h) to comply with European Spedelec rules

STIALIZED

Can you regulate behaviour?

- "I was riding my e-bike on a bike path the other day, only using the pedal-assist to get up the hills, when these two guys on regular bikes came zooming by like idiots. The bike is not the problem, it's the rider."
 - e-bike user in California commenting on People for Bikes article

3600 W kit motor. Source: https://www.electricbike.com/12-kit-power-levels-360w-to-8000w/

Source: https://www.electricbike.com/illegal-ebike-riding/

A HIGHER LEVEL OF SERVICE

Geometrics: design speed

	Speed (km/h)		Speed (km/h)	Curve radius (m)	$R = \frac{0.0079V^2}{\tan \theta}$			
	Parkin &	AASHTO Bike Guide (2012)	25	15	where:			
	Rotherham (2010)		30	19	R	=	minimum radius of curvature (m)	
85 th %	22	29	40	35	V	=	design speed (km/h)	
Design, Flat	25	30	50	52	θ	=	lean angle from the vertical (degrees)	
Design, Hilly	29	48						

- Greater use of e-bikes may lift 85th percentile
- Avoid right angles on protected bike lanes!
 - Minimise cognitive load on cyclists
 - Consider controls on conflicting movement instead
- 12 m taper for 25 km/h design speed
- 17–35° ramps; shallower is better

Surfaces

Sight lines and driveways

- FHWA Separated Bike Lane Planning & Design Guide
- Irish Cycle Design Guide: https://www.cyclemanual.ie/manual/detailsright/entrances-and-driveways/

Facility width

SUPLOS tool / VicRoads Cycle Note 21 – QLD Main Roads & Transport tool

Intersection details

Indented hook turns

Traditional

Indented

Highway 7, York Region, Canada

John Lieswyn (021) 226 2929 john.lieswyn@viastrada.nz