

E-bike safety, speed, gender and regulation

Background

https://www.nzta.govt.nz/assets/Uploads/Progress-on-making-cycling-safer-and-more-attractive.pdf

A note to the audience

This presentation is based on research report *RR 621 Regulations and safety for electric vehicles and other low-powered vehicles*.

While the NZ Transport Agency provided investment, the research was undertaken independently, and the resulting findings should **not be regarded as being the opinion, responsibility or policy** of the Transport Agency or indeed of any NZ Government agency.

The Transport Agency is established under the Land Transport Management Act 2003. The objective of the Transport Agency is to undertake its functions in a way that contributes to an efficient, effective and safe land transport system in the public interest. The Transport Agency funds innovative and relevant research that contributes to this objective.

People using this research should apply and rely on their own skill and judgement and, if necessary, they should seek appropriate legal or other expertise regarding its use.

Research motivation

Innovation outrunning legislation

Fast growth

Research questions and report structure

Report organisation	Topic or <i>research question</i> addressed
1. Introduction	Why regulate?
2. Types of LPVs	What is an LPV?
3. Survey summary	What does the public and industry think?
4. Market analysis	How significant is the issue?
5. Safety analysis	How serious is the issue?
6. User limitations	Should there be any age restrictions?
7. Technological features affecting safety	How will technology help?
8. Existing legislation around the world	What are other countries doing?
9. Potential regulatory options	What are the pros and cons?
10. Non-regulatory options	How else can we:
	Address safety concerns
	• Support mode shift goals and "safety in numbers"
	Support innovation?

WHY REGULATE | TYPES OF E-BIKES

Why: clarify existing rules

« Back to search results

Land Transport (Road User) Rule 2004

wheeled recreational device—

- means a vehicle that is a wheeled conveyance a) (other than a cycle that has a wheel diameter exceeding 355 mm) and that is propelled by human power or gravity; and
- b) includes a conveyance to which are attached 1 or more auxiliary propulsion motors that have a combined maximum power output not exceeding 300 W

The following are examples of vehicles that meet the definition of motor vehicle but have difficulties meeting the safety standards and other requirements. This means they cannot be operated on the road.

- Motorised skate boards, scooters, and roller skates
- Segways and similar
- **Powered Self Balancing Unicycles**
- Cycles fitted with petrol motors
- Low powered scooters/mopeds
- Cycles designed primarily to be propelled by an engine not the muscular energy of the rider

Why: conform to, support industry

300W rated motor doesn't exist

http://www.szbaf.com/en/components/motor.html

Safe system approach

Vehicle safety

Road and path design

User behaviours

E-bike types in NZ (per current regulations)

"Power-assisted pedal cycle"

designed primarily to be propelled by the muscular energy of the rider

Pedelec

Throttle 'twist & go'

"Power-assisted pedal cycle" Ambiguous. Not really ergonomic to pedal.

"Power-assisted pedal cycle" But at 70 km/h, should it be?

"Pedal-assisted power cycle"

term in case law only. Scooter-style electric bike (SSEB). Max 20-25 km/h. Looks like a motor scooter.

"Power-assisted pedal cycle" Cargo trike

SAFETY AND SPEED

Speed is most common safety concern

- E-bikes, compared with ordinary bikes:
 - Heavier
 - Can accelerate faster
 - Higher average speed

- Greater momentum on collision
- Requires greater cognitive ability
- Helps users to avoid conflict, take the lane

E-bike max / avg speeds from our survey

Unpowered	E-25	E-32	E-45	Diff.	Study	Country	Context
18.4					Boufus et al (2017)	AU	Paths
-	16.9	-	-	3.3	Dozza et al (2016)	SWE	Various
13.6	-	-	-		Dozza et al (2013)	SWE	Various
15.3	17.4			2.1	German Insurance Association	GER	Roads
			23.2	7.9	(2014)		
16.1	-	-	-	-	Schleinitz et al (2015)	GER	Paths
	19.0	-	-	2.9	2.9		
	-	-	24.9	8.8			
19.8	22.5			2.7	Sander and Marker (2015)	GER	Roads
13.7	15.8			2.1	Sperlich et al (2012)	GER	Roads
21.6	-	-	-	-	Parkin and Rotheram (2010)	UK	Roads
17.7	19.3			2.6	Vlakveld (2014)	HOL	Roads
14.9	16.6			1.7			
10.5		13.3	-	2.9	Langford et al (2015)	US	Paths
12.6		11		-1.6			
10.3	16.5			6.2	Gojanovic et al (2011a)	FIN	Road
23.6		30		6.4	Lieswyn (unpublished)	NZ	Various

Unpowered riders on shared paths

- 5,421 riders at 12 Sydney sites
- "Riders adjust their speeds to...pedestrians and path conditions"

Median	16 km/h	Mean	18.4 km/h	> 30 km/h	7.8%

FACTORS LEADING TO SPEED +/- MEDIAN SPEED	Odds ratio
Pedestrians > 100 / hour	.15
Female	.4
Commuter path	1.1
Width	1.3
Centreline present	1.4
Visual segregation	3.9

Boufous, Hatfield, Grzebieta (in press) Environmental factors on cycling speed on shared paths

Methods

- Pro Laser III radar gun
 - Speed accuracy +/-1 km/h for subject targets
 - Range 1800m, accuracy 0.15m
 - Acquisition time 0.3s
 - Beam width 1m @ 300m
- Free speed observations separate reading if:
 - Lateral \pm 1m, considered apparent steering inputs
 - Longitudinal ± 3 bike lengths, considered apparent deceleration
- E-bikes identification
 - Initial judgement aided by presence of steady headlight
 - Confirmed by visual scan for motor

Christchurch sites

Wellington site

Results by gender

	Fema	ale	Mal	e	Diff.	All rid	ers	
Туре	Avg.	Obs.	Avg.	Obs.	Avg.	Avg.	Obs.	Precision at 95% CI
E-bike	27.4	9	30.9	15	3.5	29.6	24	2.4 km/h
Unassisted	21.4	167	25.3	502	3.9	24.4	669	0.5 km/h
Total	21.7	176	25.5	517	3.8	24.5	693	
Female % (e-k	oike)	38%						
Female % (un	assisted)	25%	25%					
E-bike diff.						5.3		

- 1. Women are a larger proportion of e-bike (38%) than unassisted riders (25%)
- 2. The difference in average speed between genders may be less for e-bikes than for unassisted riders
- 3. E-bike riders travel **about** 5 km/h faster (29.6 km/h) than unassisted riders (24.4 km/h)

	Туре	Bus / bik	e lane	Cycle lane	carside	Shared	l path
lity type	Location	Average	Obs.	Average	Obs.	Average	Obs.
	E-bike	25.0	1	32.5	6	28.9	17
ι.	Colombo	25.0	1				
L Z	Ferry			32.8	4		
	Hagley					28.8	8
'	Strickland			32.0	2		
by fac	Hutt Rd					29.0	9
	Unassisted	25.4	93	24.6	249	23.9	327
Q	Colombo	25.4	93				
S	Ferry			25.6	92		
ults	Hagley					21.7	215
Б	Strickland			24.0	157		
es	Hutt Rd					28.2	112
R	Total	25.4	94	24.8	255	24.1	344
	E-bike diff.	n/s		7.9		5.0	

REGULATORY APPROACHES

Regulation in EU

• Effective 01 January 2017

	Category	Description	Power	Motor cut- out	Type approval
AS 15194	Pedelec	Motor only functions on condition the cyclist pedals.	<= 250 W	<= 25 km/h	Not applicable
	Powered cycle	Designed to pedal; auxilliary motor with primary aim to aid pedalling. May have a throttle. Can include vehicles with 2, 3 or 4 wheels.		<= 25 km/h	L1e-A
	Moped	Includes SSEBs, electric mopeds and S-Pedelecs.	<= 4000 W	<= 45 km/h	Lle-B

Regulation in USA

Class	Description	Throttle	Power	Motor cut-out	Age
Class 1	Low-speed pedal -assisted electric bicycle	No		Max 20 mph	
Class 2	Low-speed throttle-assisted electric bicycle	Yes		(32 km/h)	n/a
Class 3	Speed pedal-assisted electric bicycle Helmet, speedometer, prohibited on shared paths or protected cycleways unless authorised locally	No	Max 750W	<= 45 km/h	>= 16

- Tampering with speed control prohibited
- Registration, license, insurance not required
- Permanent label
- Mopeds, SSEBs separately regulated

24

Quick look at criterion 2: speed

Regime	Pros	Cons
Limit motor assist cut-out speed	Proxy for safetyDifferentiates from mopeds	Existing bikes?Widen gap in modes
32 km/h		 Not a 5 km/h increment (35?) Less safe in a crash Worse shared path conflicts?

Quick look at criterion 2: speed

Regime	Pros	Cons
Limit motor assist cut-out speed	 Proxy for safety Differentiates from mopeds 	Existing bikes?Widen gap in modes
25 km/h	Consistent with AUSafer in event of crash	Not as equitable with carsLess selection
32 km/h	 Consistent w/ US, NZ fleet Helps 'take the lane' Majority support >25 km/h 	 Not a 5 km/h increment (35?) Less safe in a crash Worse shared path conflicts?

Quick look at criterion 2: speed

Regime	Pros	Cons
Limit motor assist cut-out speed	 Proxy for safety Differentiates from mopeds 	Existing bikes?Widen gap in modes
32 km/h	 Consistent w/ US, NZ fleet Helps 'take the lane' Majority support >25 km/h 	 Not a 5 km/h increment (35?) Less safe in a crash Worse shared path conflicts?

SITUATION TODAY AND NEXT STEPS

Situation today

Sale >300W not illegal

Use of >300W on road is illegal

Industry competitive concerns

Thank you

John Lieswyn john@viastrada.nz Simon Kennett Simon.kennett@nzta.govt.nz

