

Smarter signals and data for active modes in NZ

Smart Cities webinar

Megan Gregory | September 2025

Smarter planning – field data collection

Smarter planning - GIS applications

- Field data collection
- Collate data from multiple sources
- Geographic optimisation (catchment areas)
- Network planning & prioritisation
- Trend analysis

Smarter TCDs (Traffic Control Devices)

Smarter TCDs – achievements

Smarter TCDs – achievements

- Directional signals for cyclists
 - more flexibility in operation
 - similar standard of provision as for motorists
- Two-aspect signals for cyclists
 - for shared crossings
 - possibly integrated with pedestrian signals

Smarter TCDs – wish list

Smarter TCDs - wish list

- Flashing yellow arrows
 - especially for filter turning past cyclists

Smarter TCDs - wish list

- Flashing yellow arrows
 - especially for filter turning past cyclists
- Small near-side signals for cyclists

Behaviour data technology

Behaviour data tech – current practice

Distinguish and count different types of users

Bicycle

Mode

Scooter

Countculture

Behaviour data tech – wish list

Analyse user behaviour in response to different environments / new devices

Behaviour data tech – wish list

Analyse user behaviour in response to different environments / new devices

- Types of infringement
 - E.g. for red light running: head start / false-start / late entry
- Interactions between users
 - warning factors
 - e.g. car vs cycle, cycle vs pedestrian
 - extent to which anyone changes speed / trajectory
- Level of risk when conflicts / infringements occur

VIASTRADA

TRANSPORT PLANNING AND DESIGN