

What is an Optimal Speed Limit?

Dr Glen Koorey

Director, Principal Transportation Engineer

ViaStrada Ltd, Christchurch, New Zealand

Presentation outline

- Modelling the effects of speed
 - Case 1: Optimum speeds on state hwys
- Case 2: Nelson/Tasman Speed Mgmt
 - Methodology
 - Estimating changes in Speeds and DSIs
 - Results
 - Some Caveats and Challenges

Takeaway conclusions

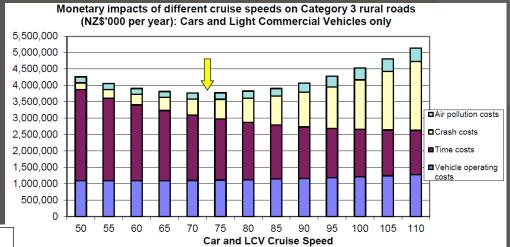
"...the coalition Government is all about making it easier for people and freight to get from A to B as quickly and efficiently as possible, which will help drive economic growth and improved productivity."

80

90 100 110 120 130

Modelling the effects of speed

NB: Not all to same scale


90 100 110 120 130

Recap:

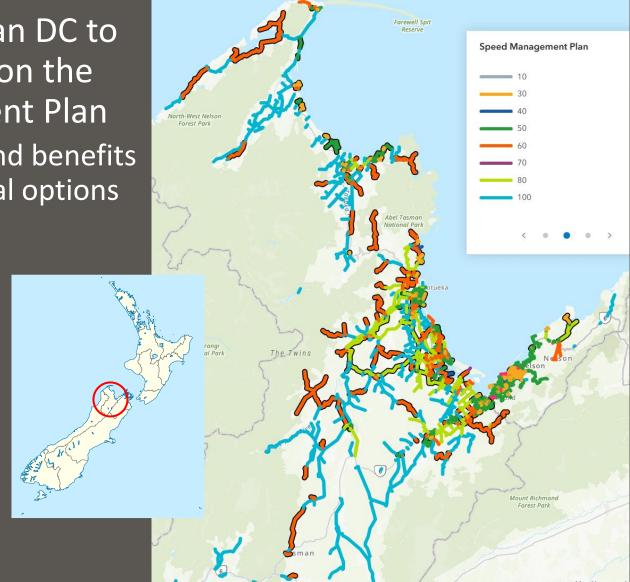
Optimum speed limits on NZ State Hwys

- Work by Max Cameron in 2012 for NZTA
 - Later revised for 2021 new MBCM values
- Speeds are especially limited for trucks
 - 90 km/h limit and extra veh operating costs

	Cruise speeds on straight		Optimum cruise		Optimum cruise speeds	
	sections of rural highway		speeds (km/h) 2012		(km/h) 2021	
	(km/h)	2012				
Road Category	Cars & light	Heavy	Light	Heavy	Light	Heavy
	commercial	commercial	vehicles	vehicles	vehicles	vehicles
	vehicles	vehicles	(Cars &	(MCVs	(Cars &	(MCVs &
	(LCV)	(HCV I)	LCVs)	& HCVs)	LCVs)	HCVs)
1. Motorways/Expressways	99.1	92.5	105	80	95-100	80
(divided four-lane) roads	99.1	92.3				
2. High Volume National	93.9	87.7	85	70	75	70
Strategic roads	93.9	07.7				
3. Straight National &	95.8	89.5	80	70	70-75	65-70
Regional Strategic roads	93.0	09.3				
4. Winding National &	83.6	78.4	75	65	65-70	60-65
Regional Strategic roads	65.0	70.4				
5. Straight Regional	95.7	89.4	80	70	70	65
Connectors & Distributors	93.7	09.4				
6. Winding Regional	70.7	74.0	65	55	60	55
Connectors & Distributors	79.7	74.9				

Key findings:

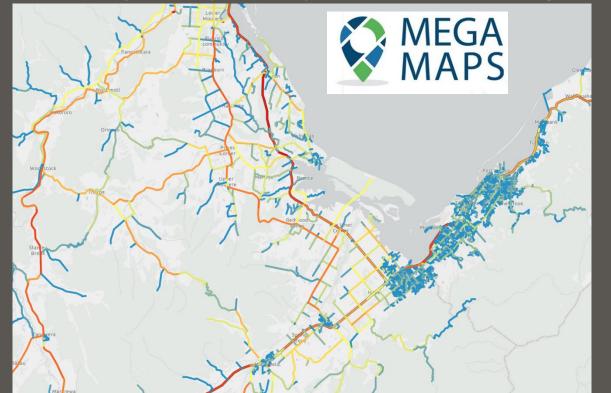
- Undivided rural SHs are best at speeds <80 km/h
- Even 4-lane motorways barely warrant exceeding 100 km/h


Case Study: Nelson/Tasman Speed Mgmt

 ViaStrada commissioned by Tasman DC to provide an economic assessment on the Nelson/Tasman Speed Management Plan

- Including a comparison of the costs and benefits between four different urban and rural options

			SAAS
OPTION A	OPTION B	OPTION C	OPTION D
30	30	30	30
50	30	40	30
50	30	40	30
50	50	40	30
50	50	50	50
	30 50 50 50	30 30 50 30 50 30 50 50	30 30 50 30 40 50 30 40 50 50 40


				SAAS
RURAL ROADS	OPTION 1	OPTION 2	OPTION 3	OPTION 4
Outside schools	30-60	30-60	30-60	30-60
Rural residential areas	100	50-60	50-60	50
Unsealed rural roads (winding or narrow)	100	60	80	60
Unsealed rural roads	100	100	80	60
High risk roads and adjacent roads	100	80	80	60- 80
Sealed rural roads (winding or narrow)	100	100	80	60
All other sealed rural roads	100	100	80	80

Nelson/Tasman Speed Management Plan Methodology

- Assessment undertaken using standard NZTA MBCM parameters
 - Likely benefits & dis-benefits related to lowered travel speeds on some roads
- Used NZTA MegaMaps data for each road section of the network
 - Estimated likely *changes* in speeds from *existing* recorded mean speeds

Monetised benefits

and costs manual

Nelson/Tasman Speed Management Plan Methodology

- Road section
- Road length
- Traffic volume
- Posted speed
- Mean speed
- DSI crashes

Estimated change in mean speeds

Est. Cost of each Option \$\$\$

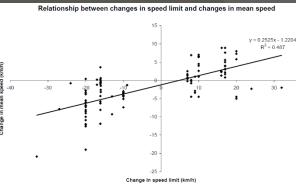
Benefit/Cost Ratio of each Option

Est. Benefit of each Option \$\$\$

For each Option:

- Expected reductions in **crash casualties**
- Expected impacts on travel times
- Expected changes in veh operating costs
- Expected changes in vehicle emissions

Estimated change in mean speeds


Nelson/Tasman Speed Management Plan Estimating changes in Mean Speeds

Previous research by Elvik et al (2004) shows
 For each 10 km/h of speed limit decrease, an associated

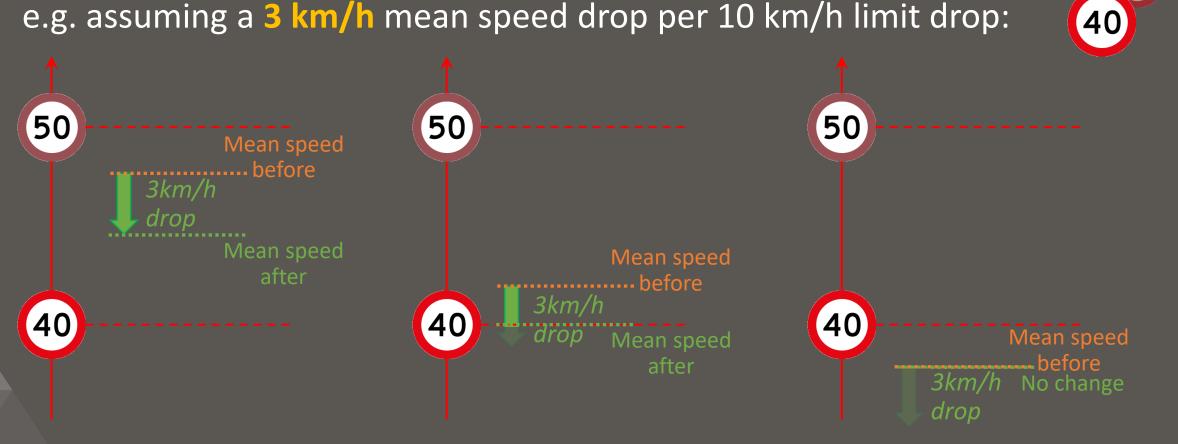
~2.5 km/h decrease is observed in mean operating speeds

- Similar findings have been observed in various studies in NZ
- However, greater speed changes might be observed
 - → low, mid and high estimates of speed change were used

	Change to mean operating speed per 10 km/h posted speed limit reduction
Low estimate	-2.0 km/h
Mid estimate	-3.0 km/h
High estimate	-5.0 km/h

Elvik, R., P. Christensen, A. H. Amundsen (2004). Speed and road accidents. An evaluation of the Power Model. Report 740/2004. Inst. of Transport Economics, Oslo

- **-4** km/h
- -6 km/h
- -10 km/h



Nelson/Tasman Speed Management Plan Estimating changes in Mean Speeds

50

• The final new mean speed also depends on the **posted** speed limit e.g. assuming a 3 km/h mean speed drop per 10 km/h limit drop:

Mean speed well above new limit

Mean speed just above new limit

Mean speed below new limit

Nelson/Tasman Speed Management Plan Estimating changes in Deaths/Serious Inj's

Two different theoretical approaches were tested in this analysis:

Nilsson's (2004) power model

Estimated DSIs After = Estimated DSIs Before
$$\times \left(\frac{Speed\ After}{Speed\ Before}\right)^{exponent}$$

Nilsson, G. (2004). Traffic safety dimensions and the Power Model to describe the effect of speed on safety. Bulletin 221. Lund Inst. of Technology, Dept of Technology & Society, Sweden

Elvik's (2013/19) exponential model

 $\textit{Estimated DSIs After} = \textit{Estimated DSIs Before} \\ \times e^{(\textit{Speed After-Speed Before}) \times \textit{exponent}}$

Each uses somewhat different exponents:

	Injury severity	Land Use Type	Exponent
Nilsson (2004)	-	Urban	3.50
power model	-	Rural	2.00
Elvik (2013/19)	Fatal	-	0.08
exponential model	Serious	-	0.06

Elvik, R., Vadeby, A., Hels, T., van Schagen, I. (2019). Updated estimates of the relationship between speed and road safety at the aggregate and individual levels. Accident Analysis & Prevention, 123

Nelson/Tasman Speed Management Plan Estimating changes in Deaths/Serious Inj's

Calculated DSI reductions using theoretical methods seemed *less* than expected, based on empirical evidence observed elsewhere in NZ

- → a separate analysis was carried out applying some *assumed* DSI reductions for *all* road segments where speed limits were being reduced
- Reductions were based on several case studies from around NZ
 - Conservative estimates applied to the low/mid/high scenarios:

	Urban Areas	Rural Areas
Low estimate	-15%	-20%
Mid estimate	-20%	-25%
High estimate	-25%	-30%

For more details, see: https://tinyurl.com/LowerSpds

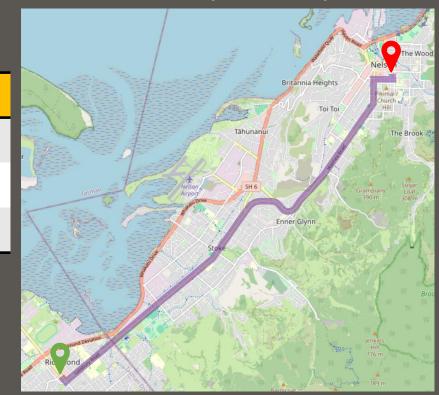
Nelson/Tasman Speed Management Plan After all that... some results!

First the Urban speed management Options:

Total Combined Benefits	Option A	Option B	Option C	Option D
LOW Range scenario	-\$1,100,432	-\$3,176,504	-\$674,464	-\$6,616,291
MID Range scenario	-\$1,527,987	-\$4,610,919	-\$1,158,544	-\$9,803,853
HIGH Range scenario	-\$2,321,460	-\$7,357,613	-\$2,480,006	-\$15,583,985
Sign Installation Costs	\$1,100,000	\$1,100,000	\$1,500,000	\$1,100,000
Benefit/Cost Ratios				
LOW Range scenario	-1.00	-2.89	-0.45	-6.01
MID Range scenario	-1.39	-4.19	-0.77	-8.91
HIGH Range scenario	-2.11	-6.69	-1.65	-14.17

- Unfortunately, none of the options stack up economically
 - Although note the caveats discussed next...

Nelson/Tasman Speed Management Plan Do they really make a big difference?


- Collectively the total increases in urban travel times add up to a reasonably large figure for most options
 - BUT the *relative* increases in travel times overall were *negligible*

e.g. Consider a trip from TDC offices (Richmond) to NCC offices (Nelson):

(ignoring intersection effects)

	Option A	Option B	Option C	Option D
Current travel time (secs)	957.6	957.6	957.6	957.6
Additional travel time (secs)	3.6 s	18.6 s	9.1 s	19.1 s
Percentage change	0.4%	1.9%	0.9%	2.0%

For three of the urban options, the relative changes across the whole network were <1.0%

Nelson/Tasman Speed Management Plan Intangible benefits of urban speed mgmt

Likely to be other benefits from speed management that are more difficult to accurately quantify, including:

Glazener A, Sanchez K, Ramani T, et al. Fourteen pathways between urban transportation and health: A conceptual model and literature review. Jnl Transportation Health, 2021

- Shifts to active travel modes from lower speeds (safety/health benefits)
- Reduction in air pollution from reduced travel (health/environmental benefits)
- Reduction in noise exposure from lower speeds (health benefits)
- Reduction in social severance from less/slower traffic (social benefits)
- Recent research in Europe has highlighted several of these benefits from cities with 30 km/h limits

Yannis, G.; Michelaraki, E. (2024). Review of City-Wide 30km/h Speed Limit Benefits in Europe. Sustainability 2024, 16

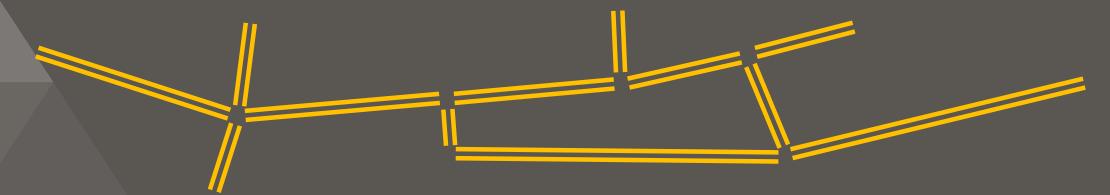
Separate modelling work on Auckland streets around schools also found good BCRs for permanent 30 km/h zones

> Flow Transportation (2022). High Level Economic Assessment of Strategic Approaches. Memo to Auckland Transport, Dec 2022

Nelson/Tasman Speed Management Plan Some more results...

• Now the Rural speed management Options:

Total Combined Benefits	Option 1	Option 2	Option 3	Option 4
LOW Range scenario	-\$211,286	\$5,051,512	\$6,779,590	\$6,301,167
MID Range scenario	-\$402,509	\$6,181,486	\$8,372,910	\$7,495,998
HIGH Range scenario	-\$856,982	\$7,253,330	\$9,917,814	\$9,922,022
Sign Installation Costs	\$500,000	\$1,000,000	\$1,100,000	\$1,200,000
Benefit/Cost Ratio				
LOW Range scenario	-0.42	5.05	6.16	5.25
MID Range scenario	-0.81	6.18	7.61	6.25
HIGH Range scenario	-1.71	7.25	9.02	8.27


- A much better outcome! (for 3 out of 4 at least)
 - Notable that Option 1 (worst BCR) largely mirrors *current* plans under the new Govt Speed Rule to reverse many lowered rural speed limits *back* to 100 km/h...

Nelson/Tasman Speed Management Plan Some challenges with the methodology

Some limitations to the simple assessment method used in this study

- Can't capture all of the potential vagaries of each scenario, e.g.
 - Differences in speeds during peak vs off-peak times due to relative congestion
 - Delays involved in traversing each intersection (due to geometry or intersection control) - generally not expected to change greatly with speed limit changes
 - Speed changes between one road segment and the next, and the subsequent effects on acceleration, deceleration, and speed-change cycle operating costs
 - The effects of gradients on speeds and VOCs/emissions

Modelling Optimal Speed Limits Some takeaway conclusions

Often a simplistic "travel time costs vs safety benefits" tension when it comes to comparing different posted speed limits

- Overlooks the relative scale of each impact
- Overlooks other tangible/intangible benefits from lower speeds

For rural roads: 60 70 80 90 100 110

Far more economically optimal to introduce speed limits <100 km/h

For **urban** areas: (30) (40) (50) (60)

- Benefits are less clear with a simplistic link-by-link assessment
- More sophisticated traffic modelling would give a more valid result
- Also investigate/quantify other intangible benefits from lower speeds

Higher speeds = economically optimal or efficient? Yeah, nah...

VIASTRADA

⊠ glen@viastrada.nz

in /glenkoorey/

TRANSPORT PLANNING AND DESIGN

www.viastrada.nz

