
Developing a Model for the Safety Impacts of Mode Shift

Dr Glen Koorey, Director & Principal Transportation Engineer ViaStrada Ltd, Christchurch, New Zealand

Both personal and collective impacts

Across whole journeys (incl. linking modes)

1: Literature review – topics explored...

DOCUMENTS REVIEWED

Relative risk per travel mode

Modal crash/casualty rates

Differences by urban area,

age group, ethnicity, etc

Travel mode casualty data

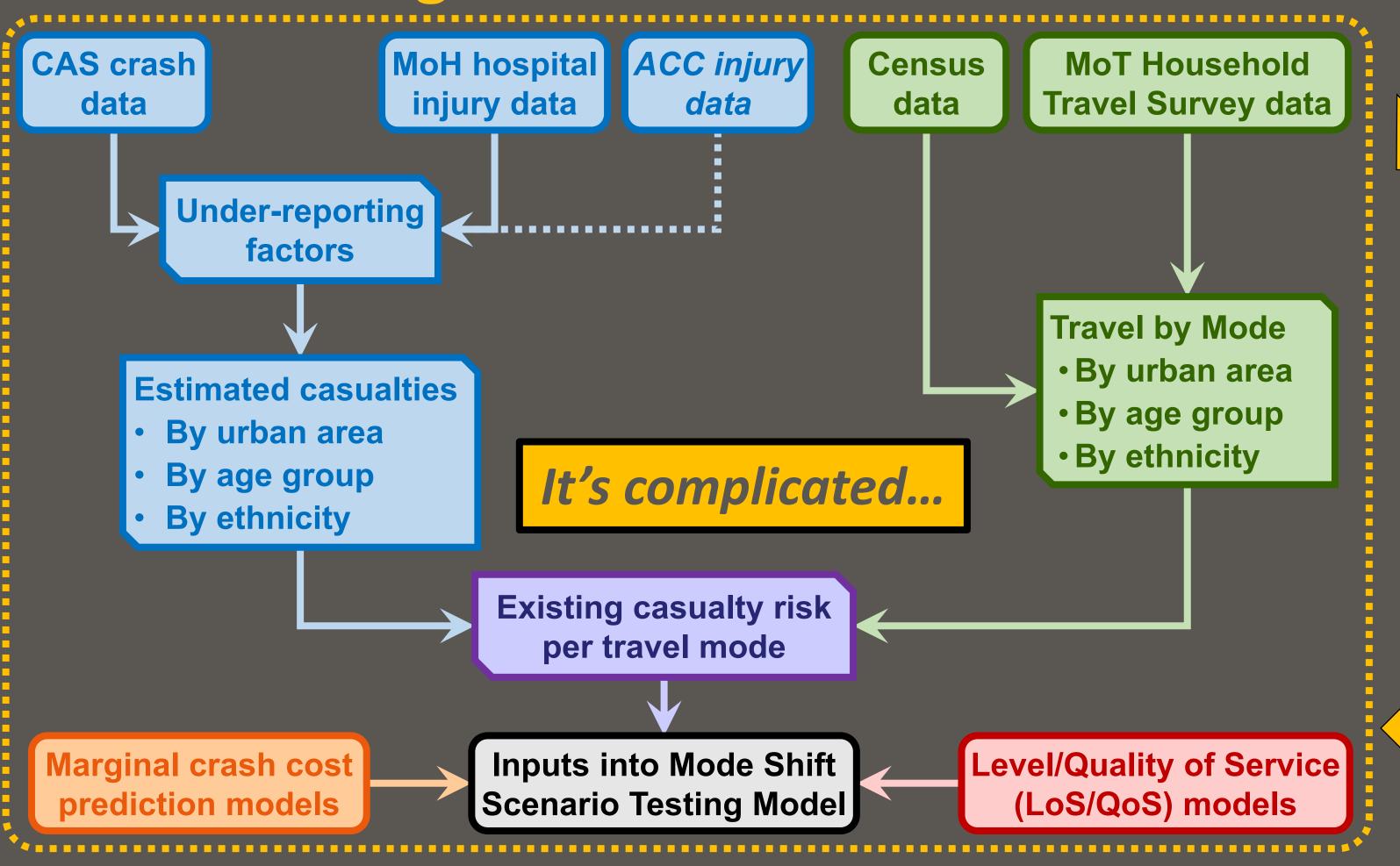
- Sources of data
- Under-reporting Levels
- Splits by urban area, age group, ethnicity, etc

Travel mode changes

- Crash prediction models
- Effects of travel cost changes Marginal crash cost models
- Mode shift impacts on safety
- Previous studies

Previous studies

- Previous models
- Policy implications


Travel mode usage data

- Measuring travel mode use
- Trip-chaining multiple modes
- Splits by urban area,
- age group, ethnicity, etc

Quality of modal facilities

- Measuring facility quality (QoS)
- Level of service (LoS) models
- Effects on modal safety
- Effects on mode shift (elasticity)

2: Building the Mode Shift Model...

Current Mode Shift Model

- Relationships that have been incorporated into the model:
 - Factor in potential changes to overall trip numbers (up/down)
 - Change in pedestrian/cycle crash rates with mode shift
 - Additional first/last-mile modes when changing PT trips
 - Usage effects of improved cycleway QoS or additional cycleways

Adjust future mode usage

(and overall travel change)

- Some features are *placeholders* for further research:
 - Safety effects of improving pedestrian access to bus/train
- Usage/safety effects of improving general pedestrian LoS
- Safety effects of improving cycleway QoS
- More accurate e-scooter/device crash rates

3: Final Spreadsheet Model produced...

MODE SHIFT MODEL Note: the values below are absolute percentage point change Improve Facilities/LoS? Existing mode usage/yr Future mode usage Improve Bus ped'n access? '000 km/yr %kms '000 hrs/yr Base Usage Change -> Decrease ped'n DSIs by: -2.2% Select AREA to model %hrs '000 km/yr '000 hrs/yr Pct Diff New Improve Train ped'n access? 13,565,911 82.5% Cars/Light Vehs Auckland Cars/Light Vehs 92.2% 430,534 (Abs %) 12,270,099 389,409 -9.6% 91.1% 85.1% 26,851 0.2% 1,226 0.2% Trucks 0.2% + 0.0% = 0.2% 1,201 -2.0% Decrease ped'n DSIs by: 0.0% Trucks 26,314 Select AGE GROUP to model 36,193 0.2% 958 + 0.0% = 0.2% Motorcycles 0.2% Motorcycles 35,469 939 -2.0% 24,153 +60.7% All AGES 479,856 3.3% 4.6% Buses 5.4% 38,824 Improve Cycle Network + 2.0% = 771,334 Buses 220,549 1.5% 7,855 2.5% 360,270 +63.4% Existing Network Length (km): 858.63 Trains **1.5%** Trains + 1.0% = 12,832 Select GENDER to model 52,623 0.4% 1,461 + 0.5% = 0.9% 123,637 Additional Cycle Facilities: Ferries 0.3% Ferries 3,433 +134.9% Cycles/E-bikes 102,746 0.7% 7,029 1.3% Cycles/E-bikes + 1.0% = 2.1% 298,688 20,432 +190.7% Painted cycle lanes (km) All GENDERS 14,758 0.1% 0.2% +50.6% 442 Separated infrastructure (km) 0.1% E-scooters, etc + 0.0% = 22,232 665 E-scooters, etc Select ETHNICITY to model 48,389 9.3% Pedestrians Pedestrians 207,899 1.4% + 1.5% = 3.5% 505,195 117,585 +143.0% N'hood Greenways (km) Overall travel change (km): TOTAL 14,707,385 522,047 -2.0% 511,606 All ETHNICITIES 14,413,238 -2.0% Go Dutch?* *Assumes all cycleways meets full best practice gui lance Note: only one demographic Existing mode DSIs/yr Future mode DSI/yr Increase cycling trips by: +48.2% group (age, gender, ethnicity) can be selected at a time per Bn hrs Abs Diff Decrease cycling DSIs by: -5.9% **Estimated DSIs** per Bn hrs per Bn km Pct Diff per Bn km 838.8 375.5 27.7 872.2 326.6 -13.0% 26.6 Motor cars Motor cars -3.8% 366.2 8,022.2 +5% 346.6 7,592.1 Improve Ped'n LoS by: -5.4% 9.8 Trucks 9.1 -7.3% Trucks 2,592.6 97,930.8 87.0 2,453.6 92,679.6 Increase ped'n trips by: Motorcycles 93.8 -7.3% -5.4% Motorcycles 76.9 -14.3% Decrease ped'n DSIs by: 2.2 3.0 +37.8% 3.9 Buses Buses +19.0% -27.1% Trains 3.0 84.9 2.2 61.8 0.7 Trains First/Last-Mile Trips with extra PT **Ferries** N/A Ferries N/A Cycles/E-bikes 55.0 535.3 7,825.2 Cycles/E-bikes +13.0% 208.1 3,042.6 62.2 Increase car trips by: +0.8% 1,827.8 Increase bike/scoot trips by: +3.9% 2,778.1 92,855.3 61,090.4 -34.2% 41.0 40.6 -0.9% E-scooters, etc E-scooters, etc 454.2 2,184.6 9,385.8 575.9 1,139.9 4,897.6 -47.8% ncrease ped'n/scoot trips by: +16.8% +26.8% Pedestrians Pedestrians 1,977.2 1,888.2 +9.3% Increase bus trips by: +2.7% TOTAL 1,032.2 70.2 1,105.2 76.7 +7.1%

Estimated future travel usage

and DSI risk by mode

Test improving pedestrian, PT,

and cycle

facilities

Further research

This is a first-cut model – more improvements needed!

- Impact of trip chaining on safety
- External vs Internal risk in crashes of multiple parties
- Cycling QoS prediction models for various facility types
- Explore relationships between QoS and crashes

Instructions FrontEnd BackendCalcs

- Bike-only or pedestrian-only crashes
- Relationships between demographics, travel, and crashes
- Occupancy of private vehicles and increased ridesharing
- Changes in VKT travelled with mode shift change
- Adding system safety to the model (e.g. lower speeds)
- Factoring in the safety impacts of congestion

Ultimately, which methods of achieving VKT reduction or modal shift result in the best safety outcomes?

Reference: ViaStrada (2024), "Mode-shift impacts on safety", NZTA research report #728

NB: * indicates that these estimates are provisional

area and

various

Existing travel

usage and DSI

risk by mode

