

Land Transport NZ Ikiiki Whenua Aotearoa

Value for Money; Level of Service tools for assessing the cycling environment

Tim Hughes

CYCLE NETWORK AND ROUTE PLANNING GUIDE

Outline of presentation

What is Level of Service?

Cycle Network and Route Planning process

Use of cycling LOS in other tools

- Strategy
- Review
- Prioritising
- Benchmarking
- Cycling LOS
 - Past research
 - Discussion
 - Current research project

Land Transport NZ Cycle Network Planning Process:

- Cycle Strategy; vision & objectives Target LOS
- Assess cycle demand: (how many? Where?)
 DEMAND
- Identify existing and potential cycle routes LOS
- Evaluate options (How good are they?) REVIEW, LOS
- Develop Cycle Network plan
- Prioritise route development
 DEMAND, LOS
- Implement AUDIT
- Monitor
 Outcome BENCHMARKING
- Overall Policy and Process Policy a

Policy audit BENCHMARKING

Components

Mid-block

- Kerbside cycle lanes
- Cycle lanes next to parking
- Contra-flow cycle lanes
- Wide kerbside lanes
- Sealed shoulders
- Bus lanes
- Transit lanes
- Mixed traffic

Paths

- Exclusive
- Shared
- Separated
- Beside roadway
- Unpaved

Components

Intersections

- More important than mid-block
- Greatest challenges and greatest opportunities.
- Least studied and understood

Land Transport NZ Develop & assess route options

- How friendly is the current provision?
- How will cyclists perceive improvements?
- Who would use it?
- How good does it need to be?
- How do my options compare?
- Tools for assessing cycle friendliness bicycle LOS / LOQ bikeability / cyclability

Cycle Review

Cycle Review:

- analyses deficiencies in order to develop and evaluate potential solutions
- It is a systematic process to ensure the full range of options are considered
- The result is well considered project brief for design of the favoured option

Cycle Review

Hierarchy of measures:

- Reduce traffic flows
- Reduce traffic speeds
- Improve junctions
- Redistribute road space
- Paths
- How much better are the options than existing.

Select Route or Network for Review - Consider policy, plans and development pressure - Assess existing and potential levels of cycle use - Assess importance of link to cyclists - Consider resources - Prioritise routes or sections for Cycle Review - Decide appropriate level of detail of Cycle Review Stage 1. Assessment of Conditions - Gather Data - Divide Route/Network into Sections if necessary - Summary description Stage 2. Level of Service Assessment - Assess LOS (by Section if necessary) - Combine results for complete Route Stage 3. Assessment of Measures - Assess feasibility of the 5 types of measure - Decide possible Priorities for Action Integrate with - Cycling Policy - Cycle Demand Factors - Other transport objectives Determine priorities for possible action

Produce Brief for detailed design of Priority Measures

- Greatest number / demand
- Crash records
- Remove blocks
- Easiest and cheapest
- Quality demonstration projects
- Area completion
- LOS improvement for greatest number

Benchmarking

- Benchmarking is a process for motivating organisations to measure and improve their performance, by sharing information using common indicators to enable the best performers to become the standard to which the other aspire.
- The secret of successful benchmarking programs is to dig behind the figures to understand performance differences and identify what leads to excellent performance.

Benchmarking

Peer Review

CTC UK regional project

- Team up ten local bodies
- Spend a day in each

Policy and Process

- Bypad
- Velo.info self assessment on web
- English regions bicycle bell ratings

Outcomes

• Dutch cycle balance

Land Transport NZ

Dutch cycle balance

- Initiated by Dutch Dept for Transport
- Carried out by Dutch Cycle Union
- Instrumented bike and surveys to give objective repeatable measures.
- Measures speed, stops, comfort, noise, video.
- 14 randomly selected routes are ridden.
- Car does same trip leaving at same time.
- Surveys user satisfaction.
- Crash statistics.
- 125 Dutch towns on web site
- Now commencing in Belgium

Dutch Cycle Balance

Cyclist Level of Service

Cyclist LOS or Bikeability ratings:

- measure or predict cycle friendliness.
- can be applied to existing situations and design proposals for components of the network.
- Can be applied to wider network
- Can be measured by user surveys.
- Can be predicted by formula.

Cyclist Level of Service

Methods available:

- Bikeability toolkit deficiency checklist
- Bicycle Path US HCM, theoretical delay based
- Bicycle compatibility index video based
- Florida multi-modal LOS real time rides
- Cycle Review LOS expert judgement
- UK Transport Research Laboratory –real time
- Florida video / real time validation
- Denmark video based
- Current NZ research project

Bicycle Path LOS

- Hein Botma (1995) US HCM 2000
 - Theoretical delay to cyclist due to interaction with other users.
- Hummer (2005) developed furthersame basis but requires survey counting user interactions by a floating cyclist.
 - Cannot be applied at design stage
 - Only counts delay
 - Not comparable with on-road methods.

Bicycle Compatibility Index

- David Harkey (1998) University North Carolina
- Users rated mid-block sections by watching videos.
- Developed simple prediction equations

Florida multi-modal LOS.

- First real time perception surveys –(1997)
- Takes into account surface condition, HV proximity etc –better than video.
- Used volunteers for a Saturday event.
- Surveyed mid-block links.

Land Transport NZ

- 2nd survey of straight through traffic light intersections (2003)
- Each participant wore a numbered jerkin.
- Used many video recorders to record traffic conditions at each site experienced by each participant.
- Developed prediction equations

Florida multi-modal LOS.

Experienced cyclists rate more harshly

• They are more aware of potential hazards

Key factors:

Land Transport NZ

- Bike lane or shoulder
- Proximity to traffic
- Traffic:
 - Volume
 - Speed
 - Heavy Vehicles
- Pavement condition
- On-street parking

Land Transport NZ Ikiiki Whenua Aotearoa Cycle Review LOS

Cycle Review LOS (Davies 1998).

- Comprehensive includes paths and intersections
- criticised as difficult and based on expert opinion
- Not validated by surveys
- Developed survey form
- Produced additive prediction equations

UK – Transport Research Laboratory

- TRL staff with varying experience rode a 9 km route on very narrow roads near the laboratory
- Each rode the same instrumented bike
- The passing distances were recorded by a side facing video recorder.
- Bicycle computer mounted on the bike
- Users rated 12 items on a ten point scale

UK – Transport Research Laboratory

Most important rating factors contributing to overall satisfaction in order:

- Overall pleasure (non-safety)
- Overall safety
- Bumpiness

 Gender and experience appeared to affect but did not significantly improve model

UK – Transport Research Laboratory

Significant variables for mlr model:

- Vehicle speeds
- Lane widths
- Frequency of side turnings
- Gradient
- Explains 30% of individual cyclist ratings

Danish Research

- Intended to use real time data
- Switched to video data to include dangerous conditions.
- Mid-block links only
- Used a wide range of conditions
- Statistically rigorous design

Danish Research

Most important:

- Width space available for cycling
- Degree of separation from motor traffic and pedestrians

Important

 Traffic volume, speed, parking and bus stops all decrease ratings.

NZ Cycle for Science

Cycling environment

perceptions research

 Performed by MWH NZ under contract

Ultimate Goal

 "... to research cyclist perceptions of the cycling environment with a view to providing a tool for rating how well provision for cyclists meets their needs".

Cycle For Science

Cycle for Science

- Cycling environment perceptions research
 - Commenced in May 2004
 - Similar to projects in UK, USA & Denmark.
 - "Cycle for Science" 1st ride 26 June 2004
 - 3 more Christchurch routes completed
 - Additional Survey in Nelson completed.
 - 108 sites in data base.
 - On road: mid-block, straight through intersections, right turns, paths

Land Transport NZ Cycle for Science – initial results

Effect of variables

Cycling advocate Technical background Riding Ability Frequency Age Gender

Off-road Path width Parking Occupancy Cycle lane width Short term parking % Heavy Vehicles On street parking provision Effective width AADT & 15 min Vol lower lower lower lower young and old higher female higher

higher lower higher lower lower higher lower

Conclusions

- Cycling LOS tools are useful in many phases of cycle strategy, planning, options development, prioritisation and monitoring
- A variety of cycling LOS tools are available
- Comprehensive methods suffer from a lack of user perceptions validation
- Validated cycling LOS tools only cover a narrow range of situations and may not be applicable to NZ conditions
- Previous validation attempts have revealed that the relationships are complex and simple methods insufficient.
- Data collection needs to overcome co-correlation due to site selection- more orthogonal design

Research method

- Identify deficiencies with NZ data **done**
- develop site selection criteria **done**

Land Transport NZ Ikiiki Whenua Aotearoa

- find sites with required characteristics.
- Develop analysis technique that will separate user and site variation – part done.
- Trial the intercept survey method on some existing sites and compare results with CfS - deferred
- Scope a bike instrument system if feasible build and trial – built - under trial.
- Collect more data until adequate
- Check fit of past models and develop new model forms for each of the facility types – starting with mid-block links

