BASIC NOISE TERMINOLOGY

NZIEH CONFERENCE CHRISTCHURCH 2009

Russell Malthus ViaStrada Limited

What is Noise?

 Noise may be considered as sound which serves little or no purpose for the exposed persons and is commonly described as "unwanted sound" - (NZS 6802:2008)

Sound wave characteristics

Frequency is expressed in Hertz (Hz) i.e. cycles per second (number of wavelengths passing a point in one second) e.g. 1 Hz = 1 cycle/second, 500 Hz = 500 cycles/second

Range of human hearing

- Sound frequencies from approximately 20 Hz to 20,000 Hz
 - -Speech is about 400 to 5000 Hz
 - -Stereo bass, thunder are below 400Hz
 - -Birds chirping, cicadas are above 5000Hz
- <u>Sound pressure levels</u> from 20 micropascals to over 100 pascals (100 million micropascals)

Decibel (dB)

- Using decibels allows us to handle the huge range of sound pressure values more easily
- A decibel is a logarithmic unit of measurement used to express sound pressure levels, with 20 micropascals as the reference level
 - For the mathematically inclined:
 - A decibel is ten times the logarithm to the base 10 of the ratio of the square of the sound pressure to the square of the reference value. $10 \log(p^2/p_0^2) dB$ (NZS 6801:2008)

(reference value p_0 = 20 micropascals)

Adding sound levels

1 plus 1 = 3!
 (Adding two equal sound sources raises the level by 3 dB)
 e.g. 50 dB + 50 dB = 53 dB

 If the difference between the two sound sources is 10 dB or more, there is no increase:

> 50 dB + 48 dB = 52 dB50 dB + 44 dB = 51 dB50 dB + 40 dB = 50 dB

How we perceive changes of sound pressure level

- 2 or 3 dB change is just perceptible
- 5 dB is noticeable
- 10 dB change sounds twice as loud
- 20 dB change sounds 4x as loud
- 40 dB change sounds 8x as loud... etc

A and C Weighting

- Noises at different frequencies are perceived differently
- Human hearing adjusts (or 'weights') lower frequencies so that they don't sound as loud as higher ones
- In sound level meters, frequencies are 'weighted' (attenuated) in a similar way to our own hearing
- 'A' weighting approximates our normal hearing response, and is used in most noise standards in District Plans
- 'C' weighting is used in some Plans to control instantaneous loud noises such as blasting

A weighting and C weighting curves

Picture source: Bruel and Kjaer

Noise attenuation

Noise is reduced (attenuated) through

- distance from the source
 - Point source (e.g. generator): 6 dB per doubling of distance

 - Line source (e.g. road): 3 dB per doubling of distance
- air absorption
- buildings and other barriers
- meteorological conditions
- natural features such as terrain and forests
- But ground or water surface reflection and wind can increase the noise level at the receiving point
- High frequencies are easier to shield by buildings and barriers than low frequencies (i.e. bass)

Environmental noise terms

Term	NZS6801:2008 symbol	Previous NZS version symbols
Decibel (dB)		
•A or C weighting		
•Maximum noise level	•dB L _{AFMAX}	•dBA Lmax
•10 Percentile level	•dB L _{A10}	•dBA L10
 Background noise level 	•dB L _{A90} /dB L _{A95}	•dBA L90/dBA L95
•Equivalent sound level	•dB L _{Aeq(t)}	•dBA Leq
 Sound exposure level 	•dB L _{AE}	•dBA SEL
Peak sound level	•dB L _{Cpeak}	•LPeak

Noise parameters: Leq

dBL_{Aeq(t)} (NZS 6801:2008)

- The time-average A-weighted sound pressure level
- The level of steady noise which would contain the same sound energy as all the noise variations over the measurement period
- Can be used for a variety of noise types (steady, fluctuating etc)
- Good correlation with annoyance studies
- Accepted and applied universally

Percentile (Centile) levels

dBL_{A10(t)} - "the L10"

- The level met or exceeded for 10% of the measurement interval
- Widely used in District Plans to control a variety of noise situations, but more appropriate for steady noise
- Will be replaced by L_{Aeq} as District Plans are gradually updated to include 2008 versions of NZS6801 and 6802

dBL_{A90(t)} - "the L90"

- The 'background' noise level the level met or exceeded for 90% of the measurement interval
- L95 used in earlier versions of NZ Acoustic Standards

Maximum noise level

• dBL_{AFMAX} (NZS 6801:2008)

– Used as a 'cap' for noise emissions, to control brief loud noises which may not be controlled by L_{Aeq} or L_{A10}

Ln, Lmax and Leq compared

Sound exposure level

- dB SEL or dBL_{AE}
 - The sound level which, if maintained constant for one second, would convey the same sound energy as a given noise event
 - i.e. the energy of the event is normalised to 1 second
 - Allows the Leq from a number of similar discrete noise events (e.g. car or aircraft movements) to be calculated for any assessment period
 - Allows the sound energy from different events to be compared

Day/night level

Ldn

- = Leq (24 hours) with 10 decibels added during the night period because night-time noise events are more annoying
 - Ld = Leq (15 hrs) between 0700 -2200hrs
 - Ln = Leq (9 hrs) + 10dB between 2200 and 0700 hrs

Adding 10dB over the night period penalises any noise event during that period

• e.g. one night flight = 10 day flights

Russell Malthus Senior Environmental Health Consultant ViaStrada Limited <u>russell@viastrada.co.nz</u> <u>www.viastrada.co.nz</u>

