

Pedestrian LOS at Signals

Presentation to the SNUG workshop 15 November 2010, Wellington

Presented by: Axel Wilke

TRAFFIC ENGINEERING AND PLANNING

Background

"City for People Action Plan" adopted by CCC Resulting from Jan Gehl study "Public Space Public Life"

A	CTION		TARGETS				New
#	Public Space Public Life Recommendations	A City for People Action Plan Recommendations	LTCCP 2009-2019	LTCCP 2012- 2022	LTCCP 2015 - 2025	LTCCP 2018 - 2028	Aligned Existing
1 2	Create a high quality walk along Colombo Street from Victoria Square to the new Transport Interchange square Investigate changing Colombo Street to shared priority for pedestrians, cyclists and	Develop a concept plan for a Colombo Street upgrade from Victoria Square to the new Transport Interchange Square (including investigation of shared priority for pedestrians, cyclists and public transport/pedestrian waiting	Develop Concept Plan	_			NEW
3	public transport (excluding private vehicles) Provide waiting time displays at traffic lights to increase pedestrian priority	time displays at traffic lights/excluding private vehicles)		TOP	5 ΑΟΤΙΟ	DN .	
_	Increase pedestrian priority at intersections	Review LTCCP levels of service to provide better recognition of pedestrians	Review				Q ₀
4	4 including reduced waiting times	Review traffic light (SCATS) operations with the objective of providing higher pedestrian priority including extended 'green person' crossing times	levels of service				Ø _å

 Presentation outlines methods of improving ped level of service (LOS) at traffic signals in central Christchurch

Acknowledgements

- Client: Christchurch City Council
 - -Susan McLaughlin
- External advice
 - -Bill Sissons (Aurecon)

Project

Stage 1

- Refining the LOS process
- Measuring the LOS for the intersections in the study area
- Prepare a toolkit of measures to improve LOS
- Suggest and agree an implementation strategy

Stage 2

 Preferred option for each intersection in the implementation area – could involve network modelling

Study Area

Study area

- -32 traffic signal sites
- -110 pedestrian crosswalks

RAS

SALISBUR

Defining LOS

Final method used in the study

- **Crossing distance**: measured from the point where a crossing pedestrian would first become exposed to passing traffic until the point where the pedestrian is once again clear of the passing stream.
- **Delay time**: The average length of time between walk phases
- Green time ratio: Ratio of delay to crossing green time
- Exposure to risk: determine risk based on car turning volumes and pedestrian crossing volumes

LOS criterion 1 - Crossing distance

- Obviously the shorter the better
- But what is unacceptable?
- In USA (Dixon) they say less than 60 feet (18.3 m) is good
- The streets in this study area are generally 14 m wide

LOS Criteria	Raw data	Score
	<10	100
Crossing distance	10-13.5	70
Crossing distance	13.5-17	40
	>17	0

LOS criterion 2 – Pedestrian delay

- Calculated the average delay per pedestrian for each crosswalk $D = \frac{(C-G)^2}{2C}$
- Based on cycle length and green time
- Based on random arrivals and all pedestrians comply with signals
- Research indicates risk taking behaviour increases after 30 sec
- Worst case = 34 sec

LOS Criteria	Raw data	Score
	<14	100
Deley	14-22	70
Delay	22-30	40
	>=30	0

LOS criterion 3 - Green time ratio

- Ratio of delay to green time
- Proxy for how much time system allocates to pedestrians
- Small delay and long green time gives lowest ratio and hence best score
- Crosswalks on one way street approaches have the best green time ratio – an up side of one way streets?
 Los Criteria
 Raw data
 Score

LOS Criteria	Raw data	Score
	<1	100
Green time ratio	1-3.0	70
Green time ratio	3.0-5.5	40
	>=5.5	0

LOS 4 criterion - Risk

- Considers the conflicting movements pedestrians are exposed to on a cross walk
- Considers vehicle and pedestrian volumes

Vehicle conflicts with	Peak volume	Score		
pedestrian movements	(am + pm)			
Both Right Turn and	>600	0	0	0
Left Turn	250-600	12	18	25
	<250	30	40	50
	>400	5	15	25
Right turn only	150-400	30	40	50
	<150	55	65	75
	>500	30	40	50
Left turn only	150-500	55	65	75
	<150	70	80	90
No conflicting				
movements	NA	100	100	100
		<6	6-25	>25
		Ped movements per 5 min		

Weighting of each LOS criterion

- Distances harder to influence
- Delay and green time ratio related to level of service and an influence on safety (impatience, risk taking)
- Risk found to be biggest influence on perceived safety and comfort – more weight

LOS criteria	Weighting
LOS1 - Crossing distance	10%
LOS2 - Delay	25%
LOS3 - Green time ratio	25%
LOS4 - Risk	40%

LOS Scoring

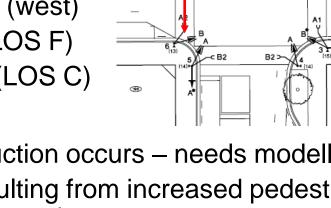
- LOS A score of 80-100
- LOS B score of 60-79
- LOS C score of 40-59
- LOS D score of 20-39
- LOS E score of 10-19
- LOS F score of 0-9

	LOS	Crosswalks
	A	10
	В	11
	С	14
\neg	D	33
4	E	29
	F	11

Measures and influence on LOS

ΤοοΙ	Crossing distance	Delay	Green time ratio	Risk	Other
Reduce cycle time		++	++		
Lengthen pedestrian phase		++	++	-	
Barnes Dance	+	+	+	++	
Phasing changes				++	
Protection against conflicting				++	
movements					
Reduce number of turning lanes				++	
Kerb build outs	++				
Green waves		+	+		
Automatic call demands		+			++
Retrofit missing crosswalks				++	
Pedestrian countdown timers					++
Near side signals					++

- ++ Definite benefit
- + Possible benefit
- Disbenefit


Measure – Reduce cycle time

Impact

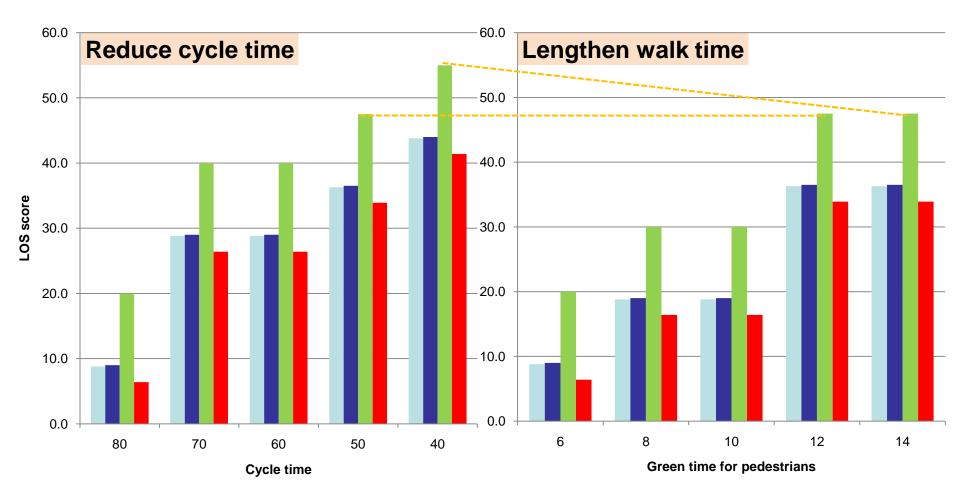
- Average delay reduced = LOS improved
- Example: Armagh/Manchester P3 (west)
- 80 second cycle time = Score 9 (LOS F)
- 40 second cycle time = Score 44 (LOS C)

Issues

- Depends on when cycle time reduction occurs needs modelling
- Will increase vehicular delays resulting from increased pedestrian priority at most intersections in the study area

Measure – Increase green walk time

Impact


- Improves average delay and green time ratio
- Example: Armagh/Manchester P3 (west)
- 6 second green time = Score 9 (LOS F)
- 10 second green time = Score 19 (LOS E)
- 12 second green time = Score 36 (LOS D)
- Issues

- Likely to increase vehicular delays resulting from increased pedestrian priority – but less than reducing cycle time
- Risk possibly (probably?) increased as exposure to turning traffic increased (not taken into account on spreadsheet)
- Mutually exclusive measure can't reduce cycle time as well

Compare cycle time & green time changes

Compare cycle time & green time changes

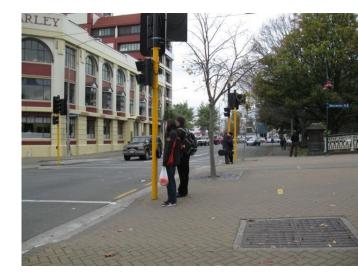
- Concluded that greatest LOS improvement is achieved through cycle time reduction
- However need to balance with impacts on motor vehicle capacity in the city

-too much delay unlikely to be accepted

Next best option increase green walk time

Stage 2 – Implementation

- In Stage 2 assess each crosswalk in the study area and determine how improvements can be achieved
 - consider network effects & may require modelling
 - assess new LOS
- To be done in Nov / Dec 2010
- Implementation in first half of 2011
- Can apply this methodology to other areas



Questions & Contacts

Questions welcome

Contacts:

Axel Wilke (ViaStrada)
– ph 03 343 8221

- Susan McLaughlin (CCC; planning)
 ph 03 941 8569
- Sean Lewis (CCC; traffic signals)
 ph 03 941 8621

